ELEN6887 Lecture 14: Denoising Smooth Functions with Unknown Smoothness

نویسنده

  • R. Castro
چکیده

Lipschitz functions are interesting, but can be very rough (these can have many kinks). In many situations the functions can be much smoother. This is how you would model the temperature inside a museum room for example. Often we don’t know how smooth the function might be, so an interesting question is if we can adapt to the unknown smoothness. In this lecture we will use the Maximum Complexity-Regularized Likelihood Estimation result we derived in Lecture 14 to extend our denoising scheme in several important ways. To begin with let’s consider a broader class of functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ELEN6887 Lecture 15: Denoising Smooth Functions with Unknown Smoothness

Lipschitz functions are interesting, but can be very rough (these can have many kinks). In many situations the functions can be much smoother. This is how you would model the temperature inside a museum room for example. Often we don’t know how smooth the function might be, so an interesting question is if we can adapt to the unknown smoothness. In this lecture we will use the Maximum Complexit...

متن کامل

ECE 901 Lecture 15: Denoising Smooth Functions with Unknown Smoothness

Lipschitz functions are interesting, but can be very rough (these can have many kinks). In many situations the functions can be much smoother. This is how you would model the temperature inside a museum room for example. Often we don’t know how smooth the function might be, so an interesting question is if we can adapt to the unknown smoothness. In this lecture we will use the Maximum Complexit...

متن کامل

Nonparametric denoising Signals of Unknown Local Structure, II: Nonparametric Regression Estimation

We consider the problem of recovering of continuous multi-dimensional functions f from the noisy observations over the regular grid m−1Zd, m ∈ N∗. Our focus is at the adaptive estimation in the case when the function can be well recovered using a linear filter, which can depend on the unknown function itself. In the companion paper [26] we have shown in the case when there exists an adapted tim...

متن کامل

Online filtering using piecewise smoothness priors: Application to normal and abnormal electrocardiogram denoising

In this work, a block-wise extension of Tikhonov regularization is proposed for denoising smooth signals contaminated by wide-band noise. The proposed method is derived from a constrained least squares problem in two forms: 1) a block-wise fixed-lag smoother with smooth inter-block transitions applied in matrix form, and 2) a fixed-interval smoother applied as a forward-backward zero-phase filt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010